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ABSTRACT: Anterior cruciate ligament (ACL) injuries are one of the most well-known orthopaedic injuries and are treated with one of
the most common orthopaedic procedures performed in the United States. This surgical procedure, ACL reconstruction, is successful at
restoring the gross stability of the knee. However, the outcomes of ACL reconstruction can be limited by short and long-term
complications, including muscle weakness, graft rupture, and premature osteoarthritis. Thus, new methods of treating this injury are
being explored. This review details the pathway of how a tissue engineering strategy can be used to improve the healing of the ACL in
preclinical studies and then translated to patients in an FDA-approved clinical study. This review paper will outline the clinical
importance of ACL injuries, history of primary repair, the pathology behind failure of the ACL to heal, pre-clinical studies, the FDA
approval process for a high risk medical device, and the preliminary results from a first-in-human study. � 2017 Orthopaedic Research
Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2606–2612, 2017.
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CLINICAL IMPORTANCE OF ACL INJURIES
ACL reconstruction, the current gold standard of care
for ACL injuries, is one of the most common orthopae-
dic procedures performed in United States with esti-
mates reaching 250,000 procedures performed
annually.1,2 Adolescents and younger individuals are
at increased risk for ACL injuries, and the incidence
in males and females is highest between ages 15 and
34.3 ACL reconstruction is an excellent procedure for
restoring gross stability to the knee. However, there
are often both short and long-term adverse sequelae.
The sequelae include relatively high graft failure
rates, particularly in adolescent patients,4–6 and that
the ACL reconstruction procedure does not prevent
the premature onset of osteoarthritis seen in patients
after an ACL injury.7–9 Specifically, one study showed
that 78% of patients developed post-traumatic osteoar-
thritis at 14 years after ACL injury regardless of
whether or not they received ACL reconstruction.10

Thus, novel solutions and new innovations are needed
for ACL injuries.

HISTORY OF PRIMARY REPAIR
Primary repair, where the torn ends of the ACL were
sutured back together, was previously used to treat
ACL ruptures. However, this technique was met with
limited success.11 Long-term results demonstrated
persistent symptoms, progressive deterioration of
knee joint laxity,12 and high failure rates at 5 and
7 years follow-up.13,14 Primary repair of the ACL was
not shown to produce better outcomes when com-
pared to conservative treatment in two prospective
randomized controlled trials.15,16 At the same time,
ACL reconstruction with a tendon graft became the
accepted standard of care as it had more predictable
outcomes and did not need to be performed immedi-
ately after the injury. Despite the thousands of
studies that have been performed to improve ACL
reconstruction outcomes, the major limitations of
muscle weakness, graft rupture, and osteoarthritis
persisted. This has led to investigations into alter-
nate sources of tissue for reconstruction, including
the use of allograft tissue17 and tissue engineered
graft substitutes.18 These tissue engineered substi-
tutes have included synthetic based materials (e.g.,
carbon fiber, polypropylene, Dacron, and polyes-
ter),19,20 as well as natural materials including colla-
gen fibers,21 silk,22 and chitosan.23 In addition, cell-
based strategies, where ACL cells are cultured and
form a sheet that can then be used as a substitute
graft24 are also under development.

While the research into alternate tissue engineering
strategies for ACL replacement or reconstruction has
been plentiful, our interest is not to engineer a graft to
replace the torn ACL, but instead to enhance healing of
the native ACL. Approaches to ACL healing have
included suture repair12 and microfracture25 with better
success seen for proximal ACL injuries at the ligament-
bone junction.14,26 However, proximal ACL tears are
only found in a small percentage of injuries and the
need for a more universally applicable technique of
repair would still be of interest. This led to the question
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of whether there might be a way to stimulate healing of
the ACL using tissue engineering techniques and thus
avoid needing to replace the torn tissue with a graft.

THE PATHOLOGY BEHIND THE FAILURE OF THE
ACL TO HEAL AND PRECLINICAL STUDIES
To identify a combination of scaffold, cells, and/or
growth factors that might be useful to stimulate ACL
healing, the pathology and mechanisms behind the
failure of the ACL to heal had to be determined. As
other ligaments around the knee joint, including the
medial collateral ligament (MCL), readily heal without
suture repair, comparing the response to injury of the
ACL with that of the MCL might facilitate the identifi-
cation of the defects in the ACL healing process that
would need to be addressed by a tissue engineered
construct. Work by Frank et al. demonstrated that
MCL wound healing occurs via a cascade of events
initiated at time of injury that continues for months
after injury. These events include provisional scaffold
formation, cell migration into the wound site, cell and
vessel proliferation in the wound site, and production of
a collagen scar mass.27,28 Other investigators have used
the MCL as a model to study the enhancement of
ligament repair using growth factors.29 While the
biology was altered by adding TGF-b or other growth
factors, the mechanical properties of the MCL were not
affected. It was of interest to determine where this
orderly and predictable process of wound healing is
deficient for the ACL. It was found that three of these
processes (cell/vessel proliferation, cell migration, and
collagen production) occurred in the injured ACL;
however, the formation of a provisional scaffold at the
wound site of the ACL was not observed (Fig. 1).30–33

The observation that a provisional scaffold can form
in the MCL wound site, but not in the ACL wound
site, may be due in part to the differences in the
environment in which the MCL and ACL reside. The
MCL is an extra-articular ligament. When an MCL
injury occurs, the ends of the ligament bleed and
deliver fibrinogen to the defined wound space, which is
limited by the tissue planes on each side. The fibrino-
gen is cleaved by thrombin to its active form, fibrin,
which crosslinks to form a stable clot, resulting in a
provisional scaffold which entrapes platelets, white
blood cells, and red blood cells within the wound space.
This provisional scaffold can then serve as a protected
space into which the surrounding tissues can grow

and reconnect. In comparison, the ACL is an intra-
articular ligament that is surrounded by synovial fluid
containing protease precursors, including plasmino-
gen. Plasminogen is inactive in the uninjured joint;
however, with injury there is an upregulation of
urokinase plasminogen activator (uPa) production by
the synoviocytes,34,35 which cleaves plasminogen and
forms plasmin. When the ACL tears, the ends of the
ligament bleed and the fibrinogen comes into the joint.
However, the presence of active plasmin in the syno-
vial fluid results in fibrinolysis resulting in an inabil-
ity to form a fibrin-platelet provisional scaffold, or
“bridge,” between the two torn ligament ends.36 This
lack of a “bridge” at the wound site for the ruptured
ACL, in combination with the observation that many
of the other biologic processes required for wound
healing were already occurring in the ACL, led to the
hypothesis that placement of a substitute provisional
scaffold between the torn ends might provide a space
for wound healing to occur.

THE DEVELOPMENT OF THE SCAFFOLD
Thinking that placement of a substitute provisional
scaffold might facilitate ACL healing, the next set of
studies focused on what the scaffold should contain to
mimic the function of the provisional scaffold of the
MCL. There are two factors that need to be considered
when creating a substitute provisional scaffold; (i) the
ability to stimulate cell ingrowth and proliferation,
and (ii) resistance to synovial fluid degradation. Early
in vitro studies showed that while individual growth
factors could be helpful for stimulating cell prolifera-
tion, the effects were modest, even in vitro.30,31,37–39 In
other connective tissues, the provisional scaffold acti-
vates the entrapped platelets, stimulates additional
plasma proteins and activates white blood cells.40–43

The complex interplay of these functions results in the
change of thousands of genes in the first few days after
injury.44 Thus, it remains a complex engineering task
to replicate this process with the individual addition of
growth factors or proteases to a scaffold.

The blood cells, including platelets, leukocytes, and
erythrocytes, that are trapped in the provisional
scaffold are known sources of multiple cytokines and
proteases. As these cytokines and proteases play a role
in soft tissue healing, they thus become attractive as
biologic additives to a collagen-based scaffold for ACL
healing. If it were possible to stimulate the function of

Figure 1. The primary defect for healing of
intra-articular injuries. Wounds for tissues out-
side of the joint (like the MCL) fill with a bioactive
fibrin clot after injury. In contrast, wounds inside
the joint (intra-articular, like the ACL) fail to
form this provisional scaffold and, therefore, are
missing a key component of successful wound
healing. The wound remains open, and healing
cannot occur (Used with permission from Murray
and Spindler67).
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one or more of these cell types in the ACL wound site,
perhaps a wound healing response similar to that in
the MCL could be encouraged. Platelets in particular
are carriers of multiple growth factors important in
wound healing, and are known to be a critical first
step in the wound healing cascade.45 Thus platelet
rich plasma seems to be a likely candidate for stimu-
lating healing. However, there are many different
forms of platelet-rich plasma (PRP), some enriching
the platelet component to as high as five times the
level found in whole blood; however, it was unclear
what composition of PRP would be most advantageous
for the ACL. In vitro studies confirmed that using
higher concentrations of platelets resulted in a higher
release of anabolic growth factors,42 suggesting these
enriched preparations might be of use in ACL healing
as well.

To test the hypothesis that delivering a biologically
active substitute scaffold (PRP) to the ACL wound site
could stimulate functional ACL healing, 30kg pigs
underwent bilateral ACL transection where one side
was treated with suture repairþPRP and the contra-
lateral side was treated with suture repair alone. The
outcomes, including the mechanical properties of the
repaired ACL, were compared at 14 weeks after
surgery. Disappointingly, the results demonstrated
there was no difference between groups, that PRP was
not sufficient to enhance functional healing after
suture repair of the ACL.46 One possible reason for
failure of the PRP to improve the ACL repair results
may have been premature dissolution of the PRP in
the synovial fluid. PRP, like blood, is fibrin based, and
thus the synovial joint fibrinolysis system36 may also
result in premature dissolution of the PRP clot. This
may be one of the factors behind the failure of use of
PRP to improve graft healing.47,48

This led to the next hypothesis, namely that if a
carrier could be identified that could minimize the
early degradation of the platelet-rich plasma clot and
maintain it in the wound site long enough, that ACL
healing could be possible. Prior investigators had
reported that when fibrin is combined with collagen,
they form a copolymer that is resistant to degradation
by plasmin.49 In vitro studies demonstrated that
collagen-based scaffolds, compared to fibrin-based scaf-
folds, had greater resistance to degradation by syno-
vial fluid enzymes including MMP-1, elastase, and
plasmin.50 Thus, a collagen-containing scaffold
appeared to be a reasonable candidate for serving as
the carrier for the biologic platelet-rich plasma. Addi-
tional work to optimize the suture construct to support
the healing ligament was also performed,51,52 and
subsequently replicated by other investigators.53,54

To test the hypothesis that combining a collagen-
based scaffold with PRP would result in improved
ACL healing, bovine tissue was processed to form a
porous, hydrophilic, collagen-based scaffold. This colla-
gen-based scaffold was then loaded with PRP and
placed in the gap between the ligament ends in a

complete transection model of ACL repair. This
“bridge-enhanced ACL repair” technique resulted in
equivalent mechanical outcomes of the repaired ACL
and the reconstructed ACL at 15 weeks after sur-
gery.55 Other groups have replicated these results
using a similar extracellular matrix based material in
the goat model.56 Additional in vitro work led to the
finding that both platelets and plasma proteins were
important in stimulating ACL cells to heal,40–42 red
blood cells improved collagen production by fibroblasts
in a simulated wound site57,58 and white blood cells
released anabolic growth factors.43 This led to the
observation that all parts of blood may play a role in
wound healing. Additional in vitro and in vivo studies
comparing PRP and whole blood as the biologic supple-
ment to the collagen-based scaffold and blood combina-
tion revealed that increasing the platelet count or
otherwise manipulating whole blood did not improve
outcomes.59,60 Therefore, whole blood as the biologic
stimulus for ACL repair seemed reasonable and was
selected for the longer-term in vivo studies for scaf-
fold-enhanced ACL repair.

Long-term results, at 6 and 12 months after sur-
gery, of in vivo testing of the collagen-based scaffold
combined with whole blood in a large animal model
showed that the repaired ACLs using the scaffold had
similar mechanical properties to ACLs treated with
ACL reconstruction at both time points.61,62 In addi-
tion, the use of the whole blood with a collagen-based
scaffold resulted in significantly less development of
osteoarthritis of the porcine knee at 1 year following
surgery61 (Fig. 2). The mechanisms of the chondropro-
tection are currently under investigation.

TRANSLATION FROM BENCH-TO-BEDSIDE
With the results of the long-term studies demonstrat-
ing similar mechanical properties for the scaffold-
enhanced ACL repair and ACL reconstruction with a
graft, the next step was to complete the testing
required by the FDA to translate it to clinical trials.
The collagen-based scaffold was given a device desig-
nation and guidance for the studies required for an
Investigational Device Exemption (IDE) for a first in
human study was provided by the Center for Devices
and Radiologic Health (CDRH) of the FDA. Details of
this process for an academic laboratory has been
previously described in detail.63

PRELIMINARY RESULTS FROM A FIRST IN HUMAN
SAFETY STUDY
Pre-clinical studies validating sterility and efficacy in
large animal models were completed,63–65 and an IDE
approval for a first-in-human study of 20 patients was
granted. Institutional approval and registration of the
study on Clinical Trials.gov (NCT 02292004) were
completed before opening the study to enrollment.

The first-in-human study was designed to primarily
assess the safety of the collagen-based scaffold. As all
previous studies had been done in animals and we
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were aware of the fact that the intra-articular environ-
ment is complex with regard to its response to
implanted materials, this study was designed to deter-
mine the rate of significant adverse reactions to the
implanted scaffold. As safety was the primary study
metric, the primary hypothesis was that the implanted
scaffold would not result in deep joint infection or
significant inflammation. In order to generate addi-
tional data that would help tailor future study designs,
additional secondary outcomes aimed at efficacy were
also included, including anterior-posterior (AP) laxity
of the knee, patient reported outcomes, and muscle
strength. Twenty patients were enrolled in the
non-randomized, first-in-human safety study where
ten patients received the collagen-based scaffold and
ten patients received a hamstring autograft ACL

reconstruction. The collagen-based scaffold was used
in conjunction with primary suture repair of the ACL.
The scaffold was activated using 10 cc of autologous
blood placed on it at the time of repair (Fig. 3).

As the collagen-based scaffold was previously found
to be reabsorbed by 8 weeks after in vivo implanta-
tion,65 the primary safety outcomes for all patients
were assessed specifically for the first 3 months post-
operatively as specified in the pre-study protocol (NCT
02292004). The 3 month results found there were no
joint infections or significant inflammation in either
group, no differences between groups in effusion or
pain, and no failures as determined by Lachman exam
criteria. Magnetic resonance images (MRIs) from all
patients in both groups demonstrated a continuous
ACL or intact graft. The only statistically significant

Figure 2. The distal femur cartilage 1-year after
(A) an untreated ACL rupture, (B) after conven-
tional ACL reconstruction, (C) after bridge-
enhanced ACL repair, and (D) after bridge-en-
hanced ACL reconstruction. Note the damage to
the medial femoral condyle in the untreated, ACL
reconstructed knees, and bridge-enhanced ACL
reconstructed knees (black arrows), and the lack
of damage in the medial femoral condyle in the
bridge-enhanced ACL repair and bridge-enhanced
ACL reconstructed knees (white arrow)61 (Used
with permission from Murray and Fleming).

Figure 3. Stepwise demonstration of the “Bridge-Enhanced ACL repair” technique using the collagen-based scaffold. In this
technique, the torn ACL tissue is preserved (A). A whip stitch of #2 absorbable suture (purple suture) is placed into the tibial stump of
the ACL. Small tunnels (4mm) are drilled in the femur and tibia and an extracortical button with two #2 nonabsorbable sutures (green
sutures) and the #2 absorbable ACL sutures attached to it is passed through the femoral tunnel and engaged on the proximal femoral
cortex. The nonabsorbable sutures (green) are threaded through the scaffold, tibial tunnel and secured in place with a second
extracortical button. The collagen-based scaffold is then saturated with 5ml of the patient’s blood (B), and the tibial stump pulled up
into the saturated scaffold (C). The ends of the torn ACL then grow into the collagen-based scaffold and the ligament reunites (D)
(Used with permission from Murray et al.66).
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difference between the groups was that the hamstring
strength at three months was significantly better in
the group treated with the collagen-scaffold and suture
repair than in the hamstring autograft group (mean�
SD: 77.9%�14.6% vs. 55.9%�7.8% of the contralat-
eral side, p<0.001).66 The results of this first study
demonstrated that the rate of adverse reactions may
be low enough to warrant additional efficacy studies in
a larger cohort of patients. A 100-patient randomized
control trial is currently enrolling patients at Boston
Children’s Hospital (NCT 0264545).

CONCLUSION
Injuries to the ACL are a common problem and often
result in adverse long-term health problems with
currently available treatment. While previous human
studies have shown limited utility in primary repair of
the ACL, a new procedure that augments suture
repair of the ACL with the collagen-based scaffold has
shown success in vivo studies and is currently being
evaluated in clinical trials. This review serves as a
summary of how tissue engineering technologies can
be translated from the laboratory to clinical trial by an
academic laboratory.
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